The way people grow and manage is constantly changing with the advancement of science and technology. However, the status of soil as a carrier for growing crops has not been shaken. It shows how important the soil is to the growth of everything! Everything needs to grow well, and the fertility of the soil is One of the main determinants, the organic matter content in the soil determines the fertility of the soil.

Organic matter humic acid, organic matter is not equal to humic acid.

The humic acid foliar spray is a good auxiliaries for pesticides, mainly reflected in the following aspects:

(1) Humic acid is composed of complex organic matter, which contains more hydrophilic and lipophilic groups, has the function of surfactant, and is mixed with pesticides, which can effectively exert its good dispersion and emulsification. Improve pesticide activity and increase pesticide efficacy.

(2) Humic acid has a large specific surface area and has a strong adsorption effect on organic-inorganic substances. When it is compatible with pesticides, some complexes are formed, thereby releasing the effect of slow release of the drug.

(3) Because the amino acid and S-group in the functional group of humic acid can reduce the toxic effect of pesticides on humans and animals, the safety of pesticides after application can be improved to some extent.

(4) High-activity fulvic acid has solubilization and synergistic effect on pesticides, so that the amount of pesticides can be reduced to a certain extent, thereby correspondingly reducing the transfer of pesticides in the food chain and residues in the environment.

(5) Humic acid also contributes to the degradation of residual pesticides in the soil. Humic acid promotes the growth of microorganisms in the soil, while microorganisms can effectively degrade the residual pesticides in the soil, so it can effectively reduce the environmental pollution of residual pesticides after application. To reduce the penetration of pesticides into the food chain, thereby reducing the accumulation of pesticides in animals and plants.

In addition, humic substances and humic acid themselves have a pesticide-like function. Studies have shown that after spraying humic acid foliar fertilizer, the incidence of pepper bacterial wilt, the incidence of flower rust, and the rate of rotten fruit are significantly reduced.

Potassium Humate Application in China’s saline-alkali soil is mainly distributed in the northwest, north China, northeast and coastal areas, including salt soil and alkaline soil. The saline soil mainly contains a large amount of soluble salts, including sodium chloride and sodium sulfate, and the pH value is 8-9. Alkaline soil mainly contains sodium carbonate, sodium hydrogencarbonate, pH 9~10, and is strongly alkaline.

The main hazards of saline-alkali soil: the soil salt content is too high; the concentration of harmful ions (such as Na+, Cl-, HC03-, CO22-, Mg2+, etc.) is too large; the soil is too alkaline; the soil particles are highly dispersed, and the soil structure is poor; Crop growth and development is inhibited.
Long-term application of potassium humate can gradually change the physical and chemical properties of saline-alkali soil.

First, promote the formation of soil aggregate structure


The soil aggregate structure is the basic unit of soil structure. It is a large soil particle composed of organic and inorganic colloids such as soil humus and clay. Good agglomerate structure is not easy to disperse when it is in contact with water. It is not easily broken by mechanical pressure, loose and porous, and can regulate the water, fertilizer, gas and heat of the soil.

As an organic colloid, long-term application of potassium humate can promote the formation of soil aggregate structure, improve the soil structure, and make the soil a good aeration and water permeability. It has created favorable conditions for accelerating the elution of soluble salts and root growth. .

For example, after soda-salted paddy soil in Miquan County, Xinjiang, the content of water-stable aggregates in the soil greater than 0.25 mm was significantly higher than that in the soil without potassium phytate. Other properties such as soil air content, water permeation rate, and redox potential are improved.

Second, reduce the amount of salt in the topsoil

The concentrated application of potassium humate can loosen the soil of the ploughed soil, destroy the conditions of the salt along the pores of the soil capillary, increase the accumulation of salt in the topsoil, and reduce the salt content of the topsoil, which plays a role of “separation of salt”.

The spring wheat experiment in Zhangbei County of Hebei Province showed that in the concentrated ditch sulphate potassium (100 kg/mu), the total salt content in the topsoil of 0~125px was reduced by one-third compared with the non-application, and the ion concentration also decreased significantly.
Due to the “salting salt” effect of potassium humate, the damage of salt and alkali to crop seedlings can be alleviated, the emergence rate can be improved, and weak seedlings and dead seedlings can be reduced. Zhangbei County applied humic acid potassium to spring wheat. The basic seedlings were more than 54,000 per mu, and the emergence rate was 20% higher.

Third,Potassium Humate Application to improve soil exchange capacity

Potassium humate has a high cation exchange capacity, which is more than 10 times higher than that of ordinary soil. After being applied to the soil, the adsorption capacity of the soil for Ca2+, Mg2+ and other divalent cations is significantly improved. Under the condition of proper water leaching, the leaching rate of Na+, Cl-, etc. in the soil solution is accelerated accordingly. The surface salt content is gradually reduced, and the salt composition changes significantly.
The Xinjiang Institute of Biological Soil and Desert Research applied potassium humate for two consecutive years on soda-salted paddy soil. The surface CO-, HC03-, and Cl- contents decreased, and the degree of sodium alkalinity decreased.

Fourth,Potassium Humate Application to reduce the pH of salt reduction soil (pH value)

The pH value of saline-alkaline soil, especially alkaline soil, is too high (above 9.0), which directly harms the growth of crops and even causes crop death. In addition, the pH value is too high, which also affects the availability of nutrients such as phosphorus, iron, manganese, boron and zinc in the soil.

On the alkaline alkaline soil, the acid raw coal powder or potassium humate is applied, and the humic acid can neutralize the alkali to lower the soil pH. The experimental results show that the application rate of acid weathered coal powder is 10% of soil weight, which can reduce the soil pH from 9.0 to 8.0, and reduce or eliminate the soil alkalinity.

The application of humic acid can improve soil physical and chemical properties, inhibit salt rise, neutralize soil alkalinity, reduce salinity hazard by adsorption of cations, create good soil conditions for crop seedling growth, and improve low-yield saline-alkali soil.

Humic acid increases NPK utilization and increases plant nutrition

Humic acid increases NPK utilization ,For nitrogen: Since humic acid has a salt exchange capacity many times higher than soil, it can adsorb a large amount of ammonium ions to reduce the loss; at the same time, humic acid has a good inhibitory effect on urease and nitrifying bacteria, and can greatly increase urea. Sustained release and use efficiency.

Humic acid increases NPK utilization ,Phosphorus: It can react with the fixed phosphate fertilizer in the soil to convert it into effective phosphorus; it has a protective effect on phosphorus, can improve the utilization rate of phosphate fertilizer in the current season; it can also improve the mobility of phosphorus, which is DAP/MAP, etc. Effective additives.

For potassium: It has a strong adsorption effect on K+, which can reduce the loss; it has a certain dissolution effect on potassium-containing minerals such as potassium silicate and potassium feldspar, thereby increasing the effective potassium content in the soil.

2. humic acid can improve soil aggregate structure, ph, modulating heat, microbial growth, pollution reduction – the environment

It can improve the structure of soil aggregates: the colloidal properties of humic acid have good adhesiveness, which is beneficial to the formation of more and better soil aggregate structure.

Adjusting the pH of the soil: Since humic acid is a multi-weak acid, it has a strong buffering property, so it can play a role in mediating the pH of the soil, and then convert nutrients and trace elements into a form that can be absorbed by plants.

Dimming heat: Since humic acid has a deep black color, it is equivalent to laying a black mulch on the soil after being applied to the soil, which improves the photothermal performance of the soil and is beneficial to increase the ground temperature.

Improve bacterial activity: In the soil of the compacted soil, humic acid can interact with beneficial bacteria in the soil to make the soil a soft structure and promote the absorption of water nutrients and oxygen by plants.

Reduce heavy metal pollution: In acidic soil environments, humic acid reacts with heavy metals to reduce heavy metal pollution.

Fulvic acid effect in agriculture

Fulvic acid effect in agriculture ro improved soil


1. Improve soil aggregate structure.

The fulvic acid is a humic substance, which can affect the nature of the soil, and promote the formation of a more stable agglomerate structure in the soil, so that the content of granules ≥ 0.25 mm in the soil is increased by 10-20%, and the content of organic matter is increased by 10%, so that the soil can maintain moisture. Increase ventilation, which is conducive to the growth of crops.

2.Enhance the water retention of the soil.

Fulvic acid is a hydrophilic colloid with strong water absorption capacity. The maximum water absorption can exceed 500%. The weight of water absorbed from saturated atmosphere can be more than doubled, which is much larger than that of ordinary mineral colloid. The fulvic acid inhibits the transpiration of the crop, so that the soil water consumption rate is slowed down and the soil water content is correspondingly increa3.sed.

3.Enhance the fertility of the soil.

The fulvic acid itself is an organic acid, which increases the dissolution of the mineral part of the soil, provides soil nutrients, and increases the effectiveness of nutrients through complexation. As an organic colloid, fulvic acid has positive and negative charges, which can adsorb anion and cation, so that these nutrients can be stored in the soil, not lost with water, and improve the utilization rate of fertilizer, which is especially important in sandy land.

4.Adjust the pH of the soil solution.

The fulvic acid and the fulvic acid salt transform each other to form a buffer system, thereby regulating the pH of the soil solution.

4.Reduce soil salinity.

The colloidal structure formed by the complexation of fulvic acid and chelated metal cations in the soil and its porosity (larger specific surface) can adsorb ions or molecules in the soil solution and reduce the concentration of salt in the soil solution.

Biological action fulvic acid contains a variety of oxygen-containing functional groups, which determine its physiological activity, thereby regulating the life activities, promoting the growth and reproduction of beneficial bacteria, and inhibiting the number of harmful microorganisms; the carboxyl group and phenolic hydroxyl group in fulvic acid have certain Inhibit the role of the virus.

Fulvic acid effect in agriculture to Improve fertilizer utilization


The fulvic acid contains functional groups such as carboxyl group and phenolic hydroxyl group, which has strong complexation, chelation and surface adsorption ability, can reduce the loss of ammonium nitrogen, increase the moving distance of phosphorus in the soil, and inhibit the fixation of water-soluble phosphorus in the soil.

Ineffective phosphorus is converted into effective phosphorus, which promotes the absorption of phosphorus by roots; fulvic acid can absorb and store potassium ions, and the effective potassium content is especially effective for potassium fertilizer. Experiments show that fulvic acid can increase the utilization rate of nitrogen, phosphorus and potassium nutrients in fertilizers by more than 20%.

Slow release and synergistic pesticides


The fulvic acid has the function of a surfactant, which can lower the surface tension of water and emulsify and disperse the pesticide; fulvic acid as a colloidal substance with a large viscosity and surface area may have a strong physical absorption effect on the pesticide. The fulvic acid itself has antibacterial and anti-disease effects, and the compounding with the bactericide is equivalent to the compounding of the two pesticides.

Stimulating effects on plant growth


The fulvic acid is similar to the endogenous hormones of plants, and can promote seed germination, root growth, and early coloring of fruits. Specific manifestations: promote root growth and activity, similar to auxin effect; promote seed germination, emergence of seedlings and seedling growth, similar to the effect of gibberellin; make leaves enlarge, thicken, green, delayed senescence of lower leaves, similar The role of cytokinin; the reduction of stomatal, transpiration, similar to the role of abscisic acid; the fruit coloring, maturation, similar to ethylene ripening; promote cell division and cell elongation, differentiation, hetc., similar to two The role of the above plant hormones.

Fulvic acid effect in agriculture to Improve the quality of agricultural products


The fulvic acid enhances the synthesis of sugar, starch, protein, fat and various vitamins. It can stimulate the activity of polysaccharide enzyme, convert polysaccharide into soluble monosaccharide, thereby improve fruit sweetness; increase the ratio of total sugar to nicotine and potassium to chlorine in tobacco leaves, improve the quality of tobacco leaves; increase the total content of watermelon, cantaloupe and other fruits Sugar content and vitamin C content.

Enhance crop stress resistance


Plant stress resistance index (one): the content of ABA (abscisic acid: a plant hormone that inhibits growth) in plants. The ABA content of plants will increase under any adverse conditions. Abscisic acid is the “first messenger” that initiates the expression of stress-resistant genes in plants, and effectively activates the anti-reverse immune system in plants. Physiological mechanism of fulvic acid to improve plant stress resistance (common): fulvic acid can increase the content of ABA in plants.

Fulvic acid: As a plant growth regulator, it is the best component of soil humus, which not only reduces crop burden, increases soil fertility, enriches the matrix of soil bacteria, but also improves crop yield and quality. Agriculture achieves the long-term development goal of increasing production, upgrading and raising land. So as to solve the problem of the quality of crops, so it is a must for science and technology agriculture!

First, the basic information of the soil
The soil, formed by hard rock exposed to the surface, is formed through its complex weathering process and soil-forming process over a long period of time, from the rock to the parent to the soil.
Soil minerals are the main constituents of the soil and constitute the “skeleton” of the soil, which generally accounts for 95%-98% of the mass of the soil solid phase. Rock is a substance composed of simple or multiple minerals. After weathering, the soil parent material is formed, and then the soil suitable for cultivation is selected by screening.
Furthermore, the weathering of the rock forms the parent material, and the weathering refers to the process of mechanical fracture and chemical change under the influence of air, water, temperature and biological activities of the outermost layer of the crust. It is divided into three types: physical weathering, chemical weathering, and biological weathering. As a result of weathering, the rock is further decomposed to produce secondary clay minerals. Their particles are very fine, generally less than 0.001 mm, which is in a colloidal dispersion state, which causes the parent material to have adsorption capacity, cohesiveness and plasticity, and a capillary phenomenon occurs. The ability to store water, while releasing some simple soluble salt substances, combined with the biological excretion of nutrients in the process of biological weathering, constitutes the source of primary plant nutrients in the soil, and the start of the weathering of the organism means the beginning of the soil-forming process.
Due to different natural conditions, chemical weathering and biological weathering predominate in the hot and humid south, weathering intensity is large, and weathering is more thorough, so finer clay is formed; in the north of dry cold, physical weathering predominates, and the degree of weathering is relatively shallow. Therefore, the formed mineral particles are coarser, and most of them are gravel, sand and silt.

Second, the basic classification of cultivated soil
The various solid particles in the soil are referred to as soil particles and can be divided into single particles (primary particles) and complex particles (secondary particles). The former is mainly composed of rock mineralized weathered fragments and crumbs. It can exist alone when completely dispersed. It is often called mineral particles and mineral soil particles. The latter is a group of individual particles that are combined under physical and chemical chemistry. Organic mineral complexes and microaggregates.
The size of soil mineral particles is uneven, large several millimeters or more, small is less than 1nm, and the difference is 100 times. The current classification methods in China are mainly based on different particle sizes, and the soil minerals are roughly divided into three types, sand grains (1~0.05). Mm), powder (0.05 ~ 0.01mm) and cosmid (<0.001mm), so the corresponding tillage soil is divided into three categories: sandy soil, loamy soil and clay soil. The characteristics of each soil fertility are not described, and the relevant information can be easily searched. The conclusion is that the loamy soil has better comprehensive performance and is suitable for most crops.
In order to explore the function of humic acid, let’s continue to talk about the soil, because what is the true understanding of the soil? What have you experienced? What else do you need? By waiting for these questions, it is possible to better explore the significance of humic acid for the soil.

Third, soil organic matter
Soil organic matter is an important part of soil. It refers to all carbon-containing organic substances present in the soil. It includes various animals, plant residues, microorganisms and various organic substances that are decomposed and synthesized in soil. It is soil fertility. Material basis.
Soil organisms are part of the entire ecosystem of nature. They mainly include animals, plants and microorganisms living in the soil. They do not refer to the professional vocabulary such as protozoa and metazoans. Simply speaking, soil animals have mites, nematodes, mites, ants. , snails and some insects, etc.; soil microbes contain the most bacteria, fungi, actinomycetes, tiny animals and viruses, etc., the data show that generally 1kg soil can contain 500 million bacteria, nearly 1 billion fungi, 100 Billions of actinomycetes and 500 million tiny animals. The above composition is beneficial to crops, and also has harmful organisms to the crops, which together play the vitality of the soil and play a leading role in the formation and development of the soil.
The organic matter entering the soil generally assumes three states: fresh organic matter, semi-decomposed organic residues and humic substances that have changed. Fresh organic matter is the undecomposed biological remains in the soil; semi-decomposed organic matter is a substance in which fresh organic matter is partially decomposed by microorganisms and has destroyed the original form and structure; both of them can be completely separated from the soil by mechanical means. It generally accounts for 10% to 15% of the total organic matter in the soil. It is an important source of soil organic matter and crop nutrients, and is also a raw material for the formation of soil humus.
Humic substance is a brown or dark brown macromolecular colloidal substance which is decomposed and re-synthesized by organic matter. It is closely combined with soil minerals and can not be separated by mechanical means. It is the main component of organic matter and is in general soil. It accounts for 85% to 90% of the total organic matter. Soil humus is the main substance that improves soil properties and supplies nutrients to crops, and is also one of the main indicators of soil fertility levels.
The organic matter entering the soil undergoes an extremely complex transformation process under the action of microorganisms. This transformation is mainly in two aspects, namely the mineralization process and the humification process of organic matter. The mineralization process is the decomposition of organic matter into simple inorganic Compounds (CO2, H2O, NH3, etc.) and release mineral nutrients; the humification process allows simple organic compounds to form new, more stable organic compounds and is a process of storing organic matter and nutrients.
Both of them are quite complex transformations. The results of modern research indicate that the decomposition of organic matter mainly depends on hydrolase, and the synthesis of humus is mainly the action of oxidase. It is generally believed that the formation of humus goes through two stages:
The first stage is a component (structural unit) in which microorganisms convert animal and plant residues into humus, such as aromatic compounds (polyphenols) and nitrogen-containing compounds (amino acids);
The second stage is the synthesis (condensation) of humus by the action of microorganisms. In this stage, the phenol oxidase secreted by the microorganisms oxidizes the polyphenols into hydrazines, which are easy to be combined with other components (amino acids, peptides). a monomer molecule that condenses into humic substances.
After the formation of humus, it is difficult to decompose, and it has considerable stability without changing its formation. However, when the conditions of formation change, the microbial population also changes, and the new microbial population promotes the decomposition of humus and The stored nutrients are released for plant use. Therefore, the two opposing processes of humus formation and decomposition are closely related to soil fertility. The two processes of coordination and control are naturally very important issues in agricultural production.
Everyone should have a clear understanding of soil, soil minerals and organic matter. If you don’t understand that you didn’t look at it carefully, the proportion of humus in soil organic matter and its role are undoubtedly very important. Then talk carefully below. Talk about what is humus.

Fourth, soil humus
Humus is a kind of natural high molecular polymer with complex composition and structure. Its main body is various humic acids and salts combined with metal ions. It is closely combined with soil minerals to form organic-inorganic composites. Therefore, it is difficult to dissolve in water. Therefore, in order to study, we need to extract. In the result of this extraction, we have seen the humic acid we have seen so far (there is a long-awaited relationship with the topic).
The main ingredient in the extract of humus is humic acid, which is currently divided into three types in academic and industrial fields: fulvic acid (fulic acid), brown humic acid (humic acid or palm humic acid), black humic acid (Humin or Black humic acid).
The humic acid extracted from the soil is mainly composed of carbon, hydrogen, oxygen, nitrogen, sulfur and other elements. In addition, it contains a small amount of ash elements such as calcium, magnesium, iron and silicon. The humic acid composition of different soils is not the same, so the humus Overall, the carbon content is 55% to 60%, and the nitrogen content is 3% to 6%. The C/N ratio is 10:1 to 12:1 on average.
The chemical structure of humic acid has not yet been determined, but it is certain that the molecular structure is complex and belongs to macromolecular polymers. The aromatic nucleus is the main body and various functional groups are attached. The main functional groups are phenolic hydroxyl group and carboxyl group. Methoxy, and nitrogen-containing cyclic compounds, etc., which are more difficult to decompose, can only be released after the aromatic nucleus is destroyed. Because of the presence of these oxygen-containing functional groups, humic acid exhibits various activities such as ion exchange, complexation ability to metal ions, and redox properties. These characteristics are also closely related to the electrical properties of humic acid, which is an amphoteric colloid with a negative and positive charge on the surface, usually with a negative potential. The source of these electrical properties is mainly the oxygen-containing surface of the molecule, such as the dissociation of carboxyl groups and phenolic hydroxyl groups and the protonation of amine groups.

Fifth, talk about humus function
1, water and fertilizer capacity
The humus is porous and porous, and it is a hydrophilic colloid. It can absorb a large amount of water, so it can greatly improve the water retention capacity of the soil. In addition, humus improves soil permeability, reduces water evaporation, and provides more effective water for crops.
Humus has two kinds of positive and negative charges, so it can adsorb cations and cations. Because it is mainly charged with negative charge, it has strong ability to adsorb cations, which is used as nutrient.
Once cations such as K+, NH4+, Ca2+, and Mg2+ are adsorbed, they can avoid loss with water, and can be exchanged by other cations near the roots for absorption by crops without changing the effectiveness of ions.
The ability of humus to retain cationic nutrients is much larger or even several times higher than that of other mineral colloids. Therefore, the application of organic fertilizers of humus type in soils with weak fertility ability not only increases the nutrient content of soil, but also improves soil physics. Nature, thereby improving its ability to retain fertilizer.
2, acid-base buffer capacity
Humus is a weak acid with a multi-acid functional group. Its salt has the function of amphoteric colloid, so it has a strong ability to buffer acid-base changes. Therefore, increasing the soil humus mass fraction can enhance the soil buffer acid-base performance and alleviate soil peracid. Or too alkaline.

  1. Improve soil physical properties
    The humus is mainly coated in the form of a film on the surface of the mineral soil. Since it is a colloid, the cohesive force and adhesion are larger than the sand (as mentioned above), and the sand can be added after being applied to the soil. Viscosity, which effectively promotes the formation of agglomerate structures. Because the humus is soft, flocculated and porous, the cohesive force is nearly 10 times smaller than the cosmid, and the adhesion is less than half of the cosmid. Therefore, after the cosmid is coated, it is easy to form scattered agglomerates, making the soil loose. And no longer form a hard block. The above indicates that the humus can make the sand tight, the clay becomes loose, and the soil retains water, water permeability and gas permeability, which is more suitable for agricultural farming.
    4, regulate soil heat
    It has a certain influence on the thermal condition of the soil, mainly because humus is a dark substance, and its presence can significantly deepen the color of the soil, thereby regulating the heat absorption of the soil. At the same time, the heat capacity of humus is larger than that of air and minerals, but it is smaller than water and the thermal conductivity is middle. Therefore, under the same sunshine conditions, the temperature of soil with high humus mass fraction is relatively high, and the change range is not large, which is conducive to low-temperature planting of crops. Better growth.
  2. Promote soil microbial activities
    The energy and nutrients required for the life activities of soil microbes are directly or indirectly derived from soil organic matter, while the humus, which is the main form of soil organic matter, bears the first need for nutrient requirements for microbial life activities; humus can regulate soil acid and alkali The reaction, which promotes the beneficial changes of the physical structure of the soil, also provides a strong guarantee for the life activities of the microorganisms, which is accompanied by the promotion of the ability of various microorganisms to transform substances, thereby providing a guarantee for the healthy growth of crops in the soil.
    The important role played by humus in the soil is obvious. There is a problem. Since the soil itself has humus, why do we still add it artificially? The soil contains various mineral elements. Why do we need to add various elements? Very simple, in order to increase crop yields; then with the increase in production, the problem of what the soil has experienced is easy to answer: artificially excessively adding inorganic elements, destroying the original minerals, organic matter and microbial environment of the soil; What the soil needs is gradually becoming clear: organic matter and micro-organisms, supplemented with inorganic mineral elements with the needs of crops.
    What kind of organic matter is good and what is bad? I think many experts can’t express it accurately, because we are destroying the soil organic matter formed by thousands or even hundreds of millions of years. What do you say now? In summary, of course, the source is humic acid.

Besides humic acid, ore source humic acid is derived from peat, lignite and weathered coal. As mentioned in the previous article, it is conceivable that the current source of humic acid is also a substance formed by animal and plant residues after thousands of years. This is not the same soil. Is there a primitive humus component that has not been artificially destroyed during the formation process? Humic acid is the main component of soil humus, and artificial extraction may be to alleviate the lack of effective humus in existing soils.
This may be the meaning of humic acid for the soil, and the overall advantages are quite obvious.

potassium potassium and potassium fulvate is are non-uniform macromolecular aromatic hydroxy acid salt. It has a black particle or a powdery solid and is a non-uniform macromolecular aromatic hydroxy acid salt. It has a black particle or a powdery solid and is easily soluble in water.

The aqueous solution is alkaline. humic acid has abundant active groups such as carboxyl group, hydroxyl group, phenolic hydroxyl group, sulfhydryl group and methoxy group.

After being applied to the soil, it can react with soil minerals through complexation, chelation and adsorption to improve soil structure and activate soil nutrients. Improve soil fertility and water retention capacity. It has obvious improvement effects on low-yield fields, acid soils, albic soils, saline-alkali land, sandy alkali land and sand wasteland.

What is more prominent is that it can increase the content of soil available potassium (especially water-soluble potassium) and reduce the fixation of potassium in soil. Promote the release of poorly soluble potassium, improve the supply of potassium in soil, and increase the absorption of potassium by crops.

It combines with the nitrogen, phosphorus and other elements required by plants to become a multifunctional compound fertilizer, and can be used as a soil conditioner, plant growth stimulation and fertilizer effect enhancer, and crop nutrient spray solution.

Potassium fulvate is formed by the reaction of fulvic acid and potassium hydroxide. The appearance of potassium fulvate is brownish yellow extra fine powder, slightly caramel flavor, instant soluble and no residue, fineness <120 mesh, water soluble >99.7%, water-soluble fulvic acid >50%, potassium oxide 11.7% nitrogen 3% phosphorus 0.4% crude protein content 19.78% amino acid 8.51%, and a large number of B vitamins, vitamin C, inositol, polysaccharides, etc., PH Between 5-6, its activity is 10 times that of natural humic acid, and it also contains various vitamins, trace elements, bacterial proteins, nucleic acids, surfactants and growth-promoting factors (bioactive substances).

Potassium humate is a high-efficiency macromolecular organic compound. This product can stimulate the rapid rooting of crops, multi-rooting, robust growth, increase chlorophyll, Vc content and sugar content, and play a role in drought resistance, cold resistance and disease resistance.

High quality and low cost complexing agent. The product is all water-soluble, acid-base resistant, anti-divalent ion, and can be co-dissolved with various trace elements and a large number of elements, without flocculation. Used as a main ingredient or additive for foliar fertilizer, organic fertilizer, fertilization or organic fertilizer.

Potassium fulvic acid is a new type of pure natural mineral active potassium fertilizer. It is a green high-efficiency and energy-saving fertilizer. Its appearance is brown, foamy microporous particles, containing pharmaceutical ingredients, and it has the characteristics of instant dissolution and quick action.

It can effectively kill all kinds of underground pests and has special effects on preventing the occurrence of root-knot nematode disease. It can prolong the fresh-keeping period and picking period of fruits and vegetables, prevent falling flowers and fruit drop, increase the sugar content of fruits and improve the quality of fruits.

Both potassium humate and potassium fulvic acid can be used in agricultural production, and the roles played are different and coincident. The appropriate products are selected according to the specific needs of the crops, so as to maximize crop yield.